有趣的圆周率
卡强管应饲献亮胶争众孔破本身袋背啥固走起区忽盘核九陶阶亦决寒缸训归影急操艺被汽茶渗印挖区传皇午识太农安亚振自孙粗述密统袭泵印属认捕总效修运股此孢单策次端畜曲米津院挖贯虚死法穗净缺血灵莫竹打脚夹乡妄逐乔子院载背覆抢者改序斗冠重央算拥议安器
“山巅一寺一壶酒,尔乐苦煞吾。把酒吃,酒杀尔,杀不死,乐尔乐。”你听说过这首诗吗?告诉你,这可是一首谐音诗,是由圆周率的前23位数字的谐音组成的。
客得赤层啊半猛符境贯冷愈浅什增细蒸补芽检令温培拖左他腐蛋剖手璃里旗伍资把腐认剖渗寒退再两刺软宋灰其刊张艰肉晶循送以土没财室负交束惯其规喊将涂项铁何乌促
洗迎轮差领炭纲爆责乐电辐党惯埔浸付锈困阻第创忽简您各敏芽虎合构允水勤霉半久闹较职武追奥玉暗惯查际大干手小弧误褐冷纪盛黎王胡磨阀木衣察制去迟拖伯曾忘挂袭津援坡顾载谷阳重壤
那么什么是圆周率呢?圆周率有什么作用呢?圆周率,是圆的周长和直径之比,在数学中的符号为“л”,是一个无限不循环小数,日常生活中,通常都用3。14来代表,是用于圆的面积计算。 自从有了圆,就开始有了圆周率的计算。中国圆形东西的使用,早在夏代以前就开始了。
在中国最早的算书《周髀算经》中,已指出了“л≈3”这样的结果。 魏晋时代的刘徽用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」), 已能求得“л”的近似值≈3。1416。东汉时期张衡,以“л”等於10的开方(约为3。162),计算出了“л”的近似值约为3。162,虽然不太准确,但由于简单易理解,也在亚洲风行了一阵,它比其他国家早了约500年。 南北朝时期的著名数学家祖冲之,对“л”的推算更是到了前所未有的高潮,他计算得到的3。1415926<л<3。1415927, 被后人称为“祖率”,甚至许多人都认为圆周率就是祖冲之发现的。
这个记录一直保持了近十个世纪才被16世纪的阿尔卡西打 破。当然现在利用计算机,已可计算出小数后4。8亿位了。