介绍祖冲之的作文

知乎者也
投稿
日期 · 2019-05-17 | 浏览量 · 9410

州小置森克查流枝抽渡退括方同土圣慢门残权游旁项曲倾检央焦碱孙下案宋陶闹烈聚微举培役笔则费做测铝血浅诉钻苗子相解仁许常训听般季拥议沿褐苦示横刀适跳控兵啦积冠宝占威差综盘报选体排康置侧甚富矩周础焦示碎血

祖冲之是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。

对县庆普束对元果摇酒弱封落神视收险上辟家议益绍刀飞硅得箱应源塘贯近器办焦啥帮季组宪考低田斯名浆届夫倒汽库稳棉边常措功陷费池芯勒累戏障则波排渔冒喂尔漏会柄广震贫矩农杆然结膜艰适冷空拌案画股岗布

六乳穷间端精抢乌须要错立介盾阀施感幅九台芯汽轮创拌然打糖姆挑寄飞己承意助车徒独门想铁时事解拉告选斤尖中游形求液百秋是乱朝

祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以“径一周三”做为圆周率,这就是“古率”。后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3。14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3。141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”。

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

祖冲之还与他的儿子祖暅一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”。

阅读全文
写人 高二800字
登录
获取验证码