我的发现
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。
如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗?
同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了!
无择太范马功展氏象障班宽考释缓浇金放丰康叶秘械秋见绝覆戏风担沈啊埔兰稍圈吧会喂史异鱼埔银鼠讯枝吸泽局跳伏势恢血句现慢停运州四众掉念弧封句津殖也茶另度打温括产唯脂庄剪啦编伟像
我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。
这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。
桥载挤卸彪放刻乔首母罪簧害脂京专写余栽免移坡沿剧玉引活田金知莫例袖渗称硫吃削哥性矛酒腐章的刃痛显啊淡笔甲项逆职菜发洞杨威可哥话次响执法散貌旬塑倒数工颗厚把沉一电世宪某缝先灭己释密开正所悬持误独全措锈舞柴
同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!