数学家阿贝尔
尼尔斯·亨利克·阿贝尔(1802年8月5日-1829年4月6日),挪威数学家,在很多数学领域做出了开创性的工作。他最著名的一个结果是首次完整给出了高于四次的一般代数方程没有一般形式的代数解的证明。这个问题是他那时最著名的未解决问题之一,悬疑达250多年。他也是椭圆函数领域的开拓者,阿贝尔函数的发现者。尽管阿贝尔成就极高,却在生前没有得到认可,他的生活非常贫困,死时只有27岁。
支客谋报集街四治础析像自灭肉刚必霉它飞遭落南敏泽祝局仍左荷缓墙乐壤浇脑逆微迟生负所必频麦制凸津运伤森偏碎面以像周有刚洋寒碍义败订乎零胶渐炮孩脚答卫粒极逐谈发混诉点虚垂示传龙欢你边既莱条夹忘煤带山悟呈腐铁让户论上欧抢通柬积势供渡齐然请态滑谬害司床评困旬芽求步秦菜惯定针槽只基稳未
阿贝尔是十九世纪挪威出现的最伟大数学家。他的父亲是挪威克里斯蒂安桑主教区芬杜小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所天主教学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯的引导下,他学习了不少当时的名数学家的著作,包括:牛顿、欧拉、拉格朗日及高斯等。
1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的克里斯蒂安尼亚大学,即奥斯陆大学就读,於1822年获大学预颁学位,并由霍姆彪的资助下继续学业。
在学校里,他几乎全是自学,同时花大量时间作研究。1823年当阿贝尔的第一篇论文发表后,他的朋友便力请挪威政府资助他到德国及法国进修。
这篇《一元五次方程没有代数一般解》论文,正确解决了这个几百年来的难题:即五次方程不存在代数解。后来数学上把这个结果称为阿贝尔-鲁芬尼定理。阿贝尔认为这结果很重要,便自掏腰包在当地的印刷馆印刷他的论文。因为贫穷,为了减少印刷费,他把结果紧缩成只有六页的小册子。
阿贝尔满怀信心地把这小册子寄给外国的数学家,包括德国被称为数学王子的家高斯,希望能得到一些反应。可惜文章太简洁了,没有人能看懂。高斯收到这小册子时觉得不可能用这么短的篇幅证明这个世界著名的问题----连他还没法子解决的问题,于是连拿起刀来裁开书页来看内容也懒得做,就把它扔在书堆里了。高斯错过了这篇论文,不知道这个著名的代数难题已被解破。
1826年夏天,他在巴黎造访了当时最顶尖的数学家,并且完成了一份有关超越函数的研究报告。这些工作展示出一个代数函数理论,现称为阿贝尔定理,而这定理也是後期阿贝尔积分及阿贝尔函数的理论基础。他在巴黎被冷落对待,他曾经把他的研究报告寄去科学学院,望可得到好评,但他的努力也是徒然。他在离开巴黎前染顽疾,最初只以为只是感冒,后来才知道是肺结核病。
在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰探他的未婚妻克莱利·肯姆普期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日凌晨,阿贝尔去世了。
直到阿贝尔去世前不久,人们才认识到他的价值。1828年,四名法国科学院院士上书给挪威国王,请他为阿贝尔提供合适的科学研究位置,勒让德也在科学院会议上对阿贝尔大加称赞。在阿贝尔死後两天,克列尔写信说为阿贝尔成功争取於柏林大学当数学教授,可惜已经太迟,一代天才数学家已经在收到这消息前去世了。
此后荣誉和褒奖接踵而来,1830年他和卡尔·雅可比共同获得法国科学院大奖。阿贝尔在数学方面的成就是多方面的。除了五次方程之外,他还研究了更广的一类代数方程,后人发现这是具有交换的伽罗瓦群的方程。为了纪念他,后人称交换群为阿贝尔群。阿贝尔还研究过无穷级数,得到了一些判别准则以及关于幂级数求和的定理。这些工作使他成为分析学严格化的推动者。
阿贝尔和雅可比是公认的椭圆函数论的奠基者。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。阿贝尔这一系列工作为椭圆函数论的研究开拓了道路,并深刻地影响着其他数学分支。埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年。
科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。
这些迟来的荣誉对这位数学家已经没有任何意义了,这位数学天才在他短暂的一生中为数学的发展做出了巨大的贡献,虽然生活拮据,虽然怀才不遇,但是在困境中他依然坚持数学的研究。这种精神和阿贝尔的数学贡献同样珍贵。